GA-PSO-Optimized Neural-Based Control Scheme for Adaptive Congestion Control to Improve Performance in Multimedia Applications

نویسندگان

  • Mansour Sheikhan
  • Ehsan Hemmati
  • Reza Shahnazi
چکیده

Active queue control aims to improve the overall communication network throughput, while providing lower delay and small packet loss rate. The basic idea is to actively trigger packet dropping (or marking provided by explicit congestion notification (ECN)) before buffer overflow. In this paper, two artificial neural networks (ANN)-based control schemes are proposed for adaptive queue control in TCP communication networks. The structure of these controllers is optimized using genetic algorithm (GA) and the output weights of ANNs are optimized using particle swarm optimization (PSO) algorithm. The controllers are radial bias function (RBF)-based, but to improve the robustness of RBF controller, an error-integral term is added to RBF equation in the second scheme. Experimental results show that GAPSO-optimized improved RBF (I-RBF) model controls network congestion effectively in terms of link utilization with a low packet loss rate and outperforms Drop Tail, proportional-integral (PI), random exponential marking (REM), and adaptive random early detection (ARED) controllers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy Based Approach for Rate Control in Wireless Multimedia Sensor Networks

Wireless Multimedia Sensor Networks (WMSNs) undergo congestion when a link (or a node) becomes overpopulated in terms of incoming packets. In WMSNs this happens especially in upstream nodes where all incoming packets meet and directed to the sink node. Congestion in networks, if not handled properly, might lead to congestion collapse which deteriorates the quality of service (QoS). Therefore, i...

متن کامل

Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm

This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...

متن کامل

Particle Swarm Optimized Intelligent Control of Nonlinear Full-Car Electrohydraulic Suspensions

This paper presents the design of an indirect adaptive feedback linearization (FBL)based control using dynamic neural networks (DNN) for full-car nonlinear electrohydraulic suspensions. Particle swarm optimization (PSO) algorithm is used in training the DNN to learn the dynamics of the system. A multi-loop, PSO-optimized proportional-integral-derivative (PID) control is implemented for the feed...

متن کامل

A Neural Network-PSO Based Control for Brushless DC Motors for Minimizing Commutation Torque Ripple

This paper presents the method of reducing torque ripple of brushless DC (BLDC) motor. The commutation torque ripple is reduced by control of the DC link voltage during the commutation time. The magnitude of voltage and commutation time is estimated by a neural network and optimized with an optimization method named particle swarm optimization (PSO) algorithm analysis. The goal of optimizati...

متن کامل

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06317  شماره 

صفحات  -

تاریخ انتشار 2012